Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(36): e2202930119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037336

RESUMEN

In plants, jasmonate signaling regulates a wide range of processes from growth and development to defense responses and thermotolerance. Jasmonates, such as jasmonic acid (JA), (+)-7-iso-jasmonoyl-l-isoleucine (JA-Ile), 12-oxo-10,15(Z)-phytodienoic acid (OPDA), and dinor-12-oxo-10,15(Z)-phytodienoic acid (dn-OPDA), are derived from C18 (18 Carbon atoms) and C16 polyunsaturated fatty acids (PUFAs), which are found ubiquitously in the plant kingdom. Bryophytes are also rich in C20 and C22 long-chain polyunsaturated fatty acids (LCPUFAs), which are found only at low levels in some vascular plants but are abundant in organisms of other kingdoms, including animals. The existence of bioactive jasmonates derived from LCPUFAs is currently unknown. Here, we describe the identification of an OPDA-like molecule derived from a C20 fatty acid (FA) in the liverwort Marchantia polymorpha (Mp), which we term (5Z,8Z)-10-(4-oxo-5-((Z)-pent-2-en-1-yl)cyclopent-2-en-1-yl)deca-5,8-dienoic acid (C20-OPDA). This molecule accumulates upon wounding and, when applied exogenously, can activate known Coronatine Insensitive 1 (COI1) -dependent and -independent jasmonate responses. Furthermore, we identify a dn-OPDA-like molecule (Δ4-dn-OPDA) deriving from C20-OPDA and demonstrate it to be a ligand of the jasmonate coreceptor (MpCOI1-Mp Jasmonate-Zinc finger inflorescence meristem domain [MpJAZ]) in Marchantia. By analyzing mutants impaired in the production of LCPUFAs, we elucidate the major biosynthetic pathway of C20-OPDA and Δ4-dn-OPDA. Moreover, using a double mutant compromised in the production of both Δ4-dn-OPDA and dn-OPDA, we demonstrate the additive nature of these molecules in the activation of jasmonate responses. Taken together, our data identify a ligand of MpCOI1 and demonstrate LCPUFAs as a source of bioactive jasmonates that are essential to the immune response of M. polymorpha.


Asunto(s)
Marchantia , Oxilipinas , Ciclopentanos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ligandos , Marchantia/química , Marchantia/genética , Mutación , Oxilipinas/metabolismo
2.
New Phytol ; 233(3): 1401-1413, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34846752

RESUMEN

Jasmonates are fatty acid-derived hormones that regulate multiple aspects of plant development, growth and stress responses. Bioactive jasmonates, defined as the ligands of the conserved COI1 receptor, differ between vascular plants and bryophytes (jasmonoyl-l-isoleucine (JA-Ile) and dinor-12-oxo-10,15(Z)-phytodienoic acid (dn-OPDA), respectively). The biosynthetic pathways of JA-Ile in the model vascular plant Arabidopsis thaliana have been elucidated. However, the details of dn-OPDA biosynthesis in bryophytes are still unclear. Here, we identify an orthologue of Arabidopsis fatty-acid-desaturase 5 (AtFAD5) in the model liverwort Marchantia polymorpha and show that FAD5 function is ancient and conserved between species separated by more than 450 million years (Myr) of independent evolution. Similar to AtFAD5, MpFAD5 is required for the synthesis of 7Z-hexadecenoic acid. Consequently, in Mpfad5 mutants, the hexadecanoid pathway is blocked, dn-OPDA concentrations are almost completely depleted and normal chloroplast development is impaired. Our results demonstrate that the main source of wounding-induced dn-OPDA in Marchantia is the hexadecanoid pathway and the contribution of the octadecanoid pathway (i.e. from OPDA) is minimal. Remarkably, despite extremely low concentrations of dn-OPDA, MpCOI1-mediated responses to wounding and insect feeding can still be activated in Mpfad5, suggesting that dn-OPDA may not be the only bioactive jasmonate and COI1 ligand in Marchantia.


Asunto(s)
Arabidopsis , Marchantia , Arabidopsis/genética , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Marchantia/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacología
3.
Curr Biol ; 30(6): 962-971.e3, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32142692

RESUMEN

The jasmonate signaling pathway regulates development, growth, and defense responses in plants. Studies in the model eudicot, Arabidopsis thaliana, have identified the bioactive hormone (jasmonoyl-isoleucine [JA-Ile]) and its Coronatine Insensitive 1 (COI1)/Jasmonate-ZIM Domain (JAZ) co-receptor. In bryophytes, a conserved signaling pathway regulates similar responses but uses a different ligand, the JA-Ile precursor dinor-12-oxo-10,15(Z)-phytodienoic acid (dn-OPDA), to activate a conserved co-receptor. Jasmonate responses independent of JA-Ile and COI1, thought to be mediated by the cyclopentenone OPDA, have also been suggested, but experimental limitations in Arabidopsis have hindered attempts to uncouple OPDA and JA-Ile biosynthesis. Thus, a clear understanding of this pathway remains elusive. Here, we address the role of cyclopentenones in COI1-independent responses using the bryophyte Marchantia polymorpha, which is unable to synthesize JA-Ile but does accumulate OPDA and dn-OPDA. We demonstrate that OPDA and dn-OPDA activate a COI1-independent pathway that regulates plant thermotolerance genes, and consequently, treatment with these oxylipins protects plants against heat stress. Furthermore, we identify that these molecules signal through their electrophilic properties. By performing comparative analyses between M. polymorpha and two evolutionary distant species, A. thaliana and the charophyte alga Klebsormidium nitens, we demonstrate that this pathway is conserved in streptophyte plants and pre-dates the evolutionary appearance of the COI1-dependent jasmonate pathway, which later co-opted the pre-existing dn-OPDA as its ligand. Taken together, our data indicate that cyclopentenone-regulated COI1-independent signaling is an ancient conserved pathway, whose ancestral role was to protect plants against heat stress. This pathway was likely crucial for plants' successful land colonization and will be critical for adaption to current climate warming.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Marchantia/fisiología , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Termotolerancia/genética , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carofíceas/genética , Carofíceas/fisiología , Ciclopentanos/metabolismo , Genes de Plantas , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Marchantia/genética , Proteínas de Plantas/metabolismo , Transducción de Señal
4.
Methods Mol Biol ; 1747: 281-297, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29600467

RESUMEN

The addition of nitric oxide to cysteine moieties of proteins results in the formation of S-nitrosothiols (SNO) that have emerged as important posttranslational signaling cues in a wide variety of eukaryotic processes. While formation of protein-SNO is largely nonenzymatic, the conserved family of Thioredoxin (TRX) enzymes are capable of selectively reducing protein-SNO. Consequently, TRX enzymes are thought to provide reversibility and specificity to protein-SNO signaling networks. Here, we describe an in vitro methodology based on enzymatic oxidoreductase and biotin-switch techniques, allowing for the detection of protein-SNO targets of TRX enzymes. We show that this methodology identifies both global and specific protein-SNO targets of TRX in plant cell extracts.


Asunto(s)
Procesamiento Proteico-Postraduccional , S-Nitrosotioles/metabolismo , Tiorredoxinas/metabolismo , Biotina/metabolismo , Biotinilación , Óxido Nítrico/metabolismo , Nitrosación , Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/aislamiento & purificación
5.
Proc Natl Acad Sci U S A ; 114(31): 8414-8419, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28724723

RESUMEN

Cellular accumulation of reactive oxygen species (ROS) is associated with a wide range of developmental and stress responses. Although cells have evolved to use ROS as signaling molecules, their chemically reactive nature also poses a threat. Antioxidant systems are required to detoxify ROS and prevent cellular damage, but little is known about how these systems manage to function in hostile, ROS-rich environments. Here we show that during oxidative stress in plant cells, the pathogen-inducible oxidoreductase Nucleoredoxin 1 (NRX1) targets enzymes of major hydrogen peroxide (H2O2)-scavenging pathways, including catalases. Mutant nrx1 plants displayed reduced catalase activity and were hypersensitive to oxidative stress. Remarkably, catalase was maintained in a reduced state by substrate-interaction with NRX1, a process necessary for its H2O2-scavenging activity. These data suggest that unexpectedly H2O2-scavenging enzymes experience oxidative distress in ROS-rich environments and require reductive protection from NRX1 for optimal activity.

6.
Mol Cell ; 56(1): 153-62, 2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-25201412

RESUMEN

In eukaryotes, bursts of reactive oxygen and nitrogen species mediate cellular responses to the environment by modifying cysteines of signaling proteins. Cysteine reactivity toward nitric oxide (NO) leads to formation of S-nitrosothiols (SNOs) that play important roles in pathogenesis and immunity. However, it remains poorly understood how SNOs are employed as specific, reversible signaling cues. Here we show that in plant immunity the oxidoreductase Thioredoxin-h5 (TRXh5) reverses SNO modifications by acting as a selective protein-SNO reductase. While TRXh5 failed to restore immunity in gsnor1 mutants that display excessive accumulation of the NO donor S-nitrosoglutathione, it rescued immunity in nox1 mutants that exhibit elevated levels of free NO. Rescue by TRXh5 was conferred through selective denitrosylation of excessive protein-SNO, which reinstated signaling by the immune hormone salicylic acid. Our data indicate that TRXh5 discriminates between protein-SNO substrates to provide previously unrecognized specificity and reversibility to protein-SNO signaling in plant immunity.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/inmunología , Inmunidad de la Planta , S-Nitrosotioles/metabolismo , Tiorredoxina h/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal , Tiorredoxina h/genética , Tiorredoxina h/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...